Time series analysis of temporal trends in the pertussis incidence in Mainland China from 2005 to 2016

نویسندگان

  • Qianglin Zeng
  • Dandan Li
  • Gui Huang
  • Jin Xia
  • Xiaoming Wang
  • Yamei Zhang
  • Wanping Tang
  • Hui Zhou
چکیده

Short-term forecast of pertussis incidence is helpful for advanced warning and planning resource needs for future epidemics. By utilizing the Auto-Regressive Integrated Moving Average (ARIMA) model and Exponential Smoothing (ETS) model as alterative models with R software, this paper analyzed data from Chinese Center for Disease Control and Prevention (China CDC) between January 2005 and June 2016. The ARIMA (0,1,0)(1,1,1)12 model (AICc = 1342.2 BIC = 1350.3) was selected as the best performing ARIMA model and the ETS (M,N,M) model (AICc = 1678.6, BIC = 1715.4) was selected as the best performing ETS model, and the ETS (M,N,M) model with the minimum RMSE was finally selected for in-sample-simulation and out-of-sample forecasting. Descriptive statistics showed that the reported number of pertussis cases by China CDC increased by 66.20% from 2005 (4058 cases) to 2015 (6744 cases). According to Hodrick-Prescott filter, there was an apparent cyclicity and seasonality in the pertussis reports. In out of sample forecasting, the model forecasted a relatively high incidence cases in 2016, which predicates an increasing risk of ongoing pertussis resurgence in the near future. In this regard, the ETS model would be a useful tool in simulating and forecasting the incidence of pertussis, and helping decision makers to take efficient decisions based on the advanced warning of disease incidence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Temporal Trends and Spatial Characteristics of Rainfall and Meteorological Drought in the West of Iran during the Last Few Decades

Drought is one of the most serious problems arising for human societies and ecosystems from climatevariability. This phenomenon causes billions of dollars in global damages annually and affects morepeople than any other form of natural disasters.In this study, the trends of rainfall and meteorological drought time series were investigated at tenstations located in the east of Iran for the perio...

متن کامل

Time Series Modelling of Syphilis Incidence in China from 2005 to 2012

BACKGROUND The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. METHODS In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 t...

متن کامل

Pattern mining analysis of pulmonary TB cases in Hamadan province: Using space-time cube

Background and aims: One of the most common approach to understanding spatial and temporal trends of event data is to break it up into a series of time snapshots. Therefore space-time cube method applied in order to portray the likely trend in occurrence of the pulmonary tuberculosis (TB) cases. Methods: In this study, information of all patients with pul...

متن کامل

Spatiotemporal Dynamics of Scrub Typhus Transmission in Mainland China, 2006-2014

BACKGROUND Scrub typhus is endemic in the Asia-Pacific region including China, and the number of reported cases has increased dramatically in the past decade. However, the spatial-temporal dynamics and the potential risk factors in transmission of scrub typhus in mainland China have yet to be characterized. OBJECTIVE This study aims to explore the spatiotemporal dynamics of reported scrub typ...

متن کامل

On the Detection of Trends in Time Series of Functional Data

A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016